Integrated Photonics Research, Silicon and Nanophotonics (IPR)
Events
Integrated Photonics Research, Silicon and Nanophotonics (IPR)
24 July 2022 – 28 July 2022
IPR brings together experts from both academia and industry for an open discussion of cutting-edge research, trends and problems. IPR 2021 will continue with the broadened scope started in 2015, which incorporated new sub committees dedicated to emerging areas.
IPR will cover the emerging topics in nano-photonics, new materials for photonics, such as two dimensional materials, epsilon-near-zero materials, integrated nonlinear and quantum photonics spanning from frequency combs to entangled photons generation and detection.
Panel and open discussion sessions will also be included to facilitate a forum for free exchange of ideas and related discussion.
IPR will have a joint symposia with NOMA on Machine Learning for Photonics.
Essential Links
Advanced Photonics Congress
- Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP)
- Integrated Photonics Research (IPR)
- Nonlinear Photonics (NP)
- Novel Optical Materials and Applications (NOMA)
- Optical Devices and Materials for Solar Energy and Solid State Lighting (PVLED)
- Photonic Networks and Devices (Networks)
- Signal Processing in Photonic Communications (SPPCom)
- Specialty Optical Fibers (SOF)
Topics
- Photonic Devices
- Active and passive photonic devices including lasers, modulators, detectors, isolators, amplifiers, switches, filters, waveguides fabricated from materials including
- III-V and compound semiconductors
- Silicon and other Group IV
- Dielectric and polymers
- LiNbO3 - and other pockels effect based devices
- Materials, fabrication and characterization technologies for photonic integrated circuits and devices
- Characterization of linear and nonlinear optical waveguide devices;
- Micro-machined and micro-optic components;
- Reliability advances and issues;
- Emerging packaging technologies.
- Novel assembly and manufacturing techniques;
- Nanophotonics: Nanostructured photonic devices
- Topological photonics
- Photonic crystals (waveguides, resonators, light sources)
- Nano-engineered devices for the generation, transport and detection of light
- Sub-wavelength devices
- Biological and chemical transducers
- Nanostructured photovoltaics
- Plasmonics
- Nanofabrication technology
- Lithography and etching techniques
- Growth and deposition approaches
- Self-organized methods
- Nanoscale structure characterization
- Active and passive photonic devices including lasers, modulators, detectors, isolators, amplifiers, switches, filters, waveguides fabricated from materials including
- Integrated Photonics Applications
- Photonic integrated circuits and optoelectronic integrated circuits
- Application of novel fabrication and material technologies for integrated photonics
- Photonic integrated circuits for telecom and datacom applications
- Photonic integrated circuits for sensing
- Novel applications of photonic integrated circuits
- New functionality implemented in photonic integrated circuits
- Mode locked lasers
- Ultra-narrow linewidth oscillators
- On-chip optical trapping
- Optical references
- Integrated Optical Phased Arrays
- Integrated Photonics for LiDAR applications
- PICs for artificial intelligence and machine learning
- Integrated Nonlinear & Quantum Optics
- Frequency comb generation
- Solitons and supercontinuum generation
- Physics, theory and applications of linear and nonlinear processes in novel integrated structures
- Nonlinear switching, modulation, memories and logic,
- Nonlinear optics in metamaterials, thin-films, 2D materials, and opto-mechanics
- Nonlinear frequency conversion for classical and quantum applications
- Frequency comb generation
- Harmonic generation
- Raman and Brillouin gain
- Frequency (up/down) conversion
- Generation of single/entangled photons
- Squeezed states generation and detection
- Quantum opto-mechanics
- Biological and chemical sensing
- Integrated quantum systems
- Quantum memories
- Optical quantum computing
- Quantum key distribution
- Quantum dots and other single-photon sources
- Quantum state characterization (singe photon detectors, homo/heterodyne detection, etc.)
- Microwave-optical bridging and hybridization
- Frequency comb generation
- New Materials for Integrated Photonics
- Novel materials for advanced opto-electronics
- Beyond graphene: the new class of 2D materials
- Exceptional Photonics: devices and physics with exceptional points
- Active two-dimensional photonics
- Epsilon near zero and near zero index materials
- Phase change materials for dynamic nanophotonics
- Extreme nonlinear optical materials and phenomena
- Energy efficient photonics materials and devices
- Materials and devices for optical computation and imaging
- New materials and approaches for active systems
- Novel material/device fabrication and integration methods
- Machine learning accelerated materials discovery and optimization for photonics
- Novel materials for quantum photonic devices and emitters
- Theory, simulation and novel physical insights
- Devices and performance beyond conventional limits
- Enhanced light matter interactions
- Linear and nonlinear computational analysis and methods
- Emerging opto-electronic devices and platforms
- Integrated and active plasmonic devices and materials
- Integrated electro-optic modulators and materials
- Nano-photonic device Integration
- Heterogeneous and hybrid material platforms
- Artificial optical materials and metamaterials for photonics
- Bio-photonics platforms for integrated devices
- Topological quantum materials
- Novel materials for advanced opto-electronics
Speakers
- Kei May Lau, Hong Kong Univ of Science & Technology, Hong Kong
III-V Lasers and Photodetectors on Buried Oxides by Lateral MOCVD Growth with Patterned SOI Wafers Plenary - Firooz Aflatouni, University of Pennsylvania, United States
Electric-Photonic Co-design - Jean-Emmanuel Broquin, IMEP-LAHC, France
Integrated Photonics on Glass: A Review of the Ion-exchange Technology Achievements - Linran Fan, University of Arizona, United States
High-purity Pulsed Squeezing Generation with Integrated Photonics - Andrew Forbes, University of Witwatersrand, South Africa
High-Dimensional Quantum State Engineering with Structured Photons - Takuro Fujii, NTT Device Technology Labs, Japan
Membrane Laser and Modulator for Low Power Transmitter - Boubacar Kante, University of California Berkeley, United States
Title to be Announced - Moselund Kirsten, IBM, Zurich, Switzerland
Monolithic Integration of III-V on Silicon through Direct Epitaxy - Gregor Koblmüller, Technische Universität Munchen, Germany
Heterogeneous III-V Nanowire Lasers and Quantum Dot Emitters on Silicon Photonic Circuits - Juerg Leuthold, ETH Zurich, Switzerland
Title to be Announced - Ning Li, IBM T J Watson Res Ctr , United States
Heterogeneously Integrated Low-Injection LED for Optical Communication of Ultrasmall Computers - Natalia Litchinitser, Duke University, United States
Near-infrared to Ultra-violet Frequency Conversion in Lossy Nonlinear Metasurfaces - Junqiu Liu, Univ of Science and Technology of China, China
Hybrid, Utralow-loss, Silicon Nitride Nonlinear Photonics - Kathleen McCreary, US Naval Research Laboratory, United States
Stacking-Dependent Optical Properties in Bilayer WSe2 - Karan Mehta, Intel Corporation, United States
Integrated Photonic Control of Trapped-ion Quantum Systems - Arnan Mitchell, Royal Melbourne Institute of Technology, Australia
Thin Film Lithium Niobate Integrated Photonics: the Ever Expanding Toolbox - Christelle Monat, Ecole Centrale de Lyon, France
Hybrid Nonlinear Integrated Waveguides with 2D Materials - Bert Offrein, IBM Research GmbH, Switzerland
Analog Accelerators for Neuromorphic Computing - Miles Padgett, University of Glasgow, United Kingdom
Single Fibre 3D Imaging: an Endoscope the Width of a Human Hair - Junghyun Park, Samsung Advanced Institute of Technology, Republic Of Korea
Active Metasurface-based Beam Steering and Its Application for LiDAR - Diana Qiu, Yale University, United States
Exploring Many-body Effects on the Dynamics of Optical Excitations in Low-Dimensional Material - Haisheng Rong, Intel Corporation, United States
Integrated Silicon Photonic Transmitter and Receiver for High-Speed Optical Interconnect - Kartik Srinivasan, National Inst of Standards & Technology, United States
Controlled Coupling of Whispering Gallery Modes in Photonic Crystal Microrings - Francesco Tani, Max-Planck-Inst Physik des Lichts, Germany
Ultrafast Nonlinear Optics in Gas-filled Fibres at MHz Repetition Rates - Chiara Trovatello, Columbia University, United States
Bridging Macroscopic and Microscopic Nonlinear Optics with Non-centrosymmetric Layered Semiconductors - Yuta Ueda, NTT Photonics Laboratories, Japan
Voltage-controlled tunable wavelength laser - Jianwei Wang, Peking University, China
Engineering Quantum Entanglement in Silicon - Benjamin Wetzel, XLIM Research Insititute, France
Smart Nonlinear Photonics: From on-chip Pulse Processing to Nonlinear Fiber Propagation Control - Lan Yang, Washington University in St Louis, United States
Opportunities of High-Quality Photonic Resonators for Sensing Applications - Mengjie Yu, University of Southern California, United States
Integrated Photonics on thin-film lithium niobate - Ioannis Zeimpekis, University of Southampton, United Kingdom
Ultra-Low Loss Phase Change Materials for Integrated Photonics - Mian Zhang, HyperLight Corporation, United States
High Performance Integrated Photonics with Thin Film Lithium Niobate
Committee
Shamsul Arafin, ECE, Ohio State University, United States, Chair
Matteo Clerici, University of Glasgow, United Kingdom, Chair
Masahiro Nada, NTT Device Technology Labs, Japan, Program Chair
Judith Su, University of Arizona, United States, Program Chair
Noelia Vico Trivino, IBM Research-Zurich, Switzerland, Program Chair
Photonic Devices
Songtao Liu, Intel Corporation, United States, Subcommittee Chair
Andreas Boes, Research Fellow at RMIT University, Australia
Yujin Cho, Lawrence Livermore National Laboratory, United States
Amelie Dussaigne, CEA-LETI, France
Christian Haffner, IMEC, Switzerland
Chaoran Huang, The Chinese University of Hong Kong, China
Polina Vabishchevich, National Institute of Standards and Technology (NIST), United States
Jiayang Wu, Swinburne University of Technology, Australia
Chao Xiang, University of California, Santa Barbara, United States
Jinghui Yang, Luminous Computing, United States
Integrated Photonics Applications
Patrick Runge, Fraunhofer Institute, Germany, Subcommittee Chair
Christophe Caillaud, III-V Labs, France
Takeshi Fujisawa, Hokkaido University, Japan
Anna Lena Giesecke, AMO GmbH, Germany
Amy Liu, IQE Inc, United States
Daniele Melati, University of Paris-Saclay, France
Michael Ménard, UQAM, Canada
Jelena Notaros, MIT, United States
Luke Peters, University of Sussex, United Kingdom
Bhavin Shastri, Queen's University, Canada
Alexander Wang, WIN Semiconductors Group, Taiwan
Integrated Nonlinear & Quantum Optics
Jian Wang, Huazhong University of Science and Technology, China, Subcommittee Chair
Yunhong Ding, Technical University of Denmark, Denmark
Andrea Marini, University of L'Aquila, Italy
Kaoru Minoshima, University of Electro-Communications, Japan
Martin Rochette, McGill University, Canada
Michael Strain, University of Strathclyde, United Kingdom
Juan Sebastian Totero Gongora, University of Sussex, United Kingdom
Yating Wan, University of California, Santa Barbara, United States
Jinwei Zhang, Huazhong University of Science and Technology, China
New Materials for Integrated Photonics
Nathaniel Kinsey, Virginia Commonwealth University, United States, Subcommittee Chair
Zahirul Alam, University of Ottowa, Canada
Alexandros Emboras, ETH Zurich, Switzerland
Je-Hyung Kim, Ulsan National Institute of Science and Technology, Korea
Sagi Mathai, Hewlett Packard Labs, United States
Wayesh Qarony, University of California, Berkley, United States
Martin Thomaschewski, University of Southern Denmark, Denmark
Nathan Youngblood, University of Pittsburgh, United States
Plenary Session
Warwick Bowen
University of Queensland
Absolute Quantum Advantage in Bioimaging
The performance of precision microscopes is constrained by photodamage of biological specimens. We overcome this constraint using quantum-correlated light. This allows bioimaging with clarity beyond what would be possible using coherent light.
About the Speaker
Prof Bowen’s research focuses on the implications of quantum science on precision measurement, and applications of quantum measurement in areas ranging from quantum condensed matter physics to the biosciences. He is a Fellow of the Australian Institute of Physics, Director of the University of Queensland Precision Technologies Translation Hub, and a Theme Leader of the Australian Centre for Engineered Quantum Systems. His lab has significant efforts in using quantum light and quantum-limited technologies to improve biological microscopy. They also have active research efforts on integrated photonics, quantum control of macroscopic mechanical devices, and superfluid helium physics. Prof Bowen’s research is supported by the Australian Research Council, the US Air Force Office of Scientific Research, Lockheed Martin, the US Army Research Office and the Australian Defense Science and Technology Group.
Xi (Vivian) Chen
Nokia Bell Labs
Future Ultra-High Speed Optical Transceivers
Optical transceiver is one of the fundamental building blocks of high-speed optical fiber networks. We review the evolution of optical transceivers in the (short) history of optical fiber communications and share perspectives and view on how future ultra-high speed optical transceivers may look like.
About the Speaker
Xi (Vivian) Chen is the Department Head for Opto-Electronic Subsystems Department at Nokia Bell Labs. She received her Ph.D. degree on optical fiber communication in 2012, from The University of Melbourne in Australia. Her research interests include fiber transmission, modulation format, digital signal processing, ultra-high symbol rate signal generation and detection, etc. She is a senior member if IEEE, and a recipient of Young Investigator Award (2021) from IEEE Photonics Society.
Kei May Lau
Hong Kong University of Science & Technology
III-V Lasers and Photodetectors on Buried Oxides by Lateral MOCVD Growth with Patterned SOI Wafers
For efficient light coupling between active and passive components for Si photonics, we developed the lateral aspect ratio trapping (LART) technology and demonstrated lasers and high-speed photodetectors grown on patterned SOI substrates.
About the Speaker
Kei May Lau is a Chair Professor of Electronic and Computer Engineering at the Hong Kong University of Science & Technology (HKUST). She received her degrees from the University of Minnesota and Rice University and served as a faculty member at the University of Massachusetts/Amherst until 2000. Prof. Lau is a Fellow of the IEEE, OSA, and the Hong Kong Academy of Engineering Sciences. She is also a recipient of the IET J J Thomson medal for Electronics, OSA Nick Holonyak Jr. Award, IEEE Photonics Society Aron Kressel Award, US National Science Foundation (NSF) Faculty Awards for Women (FAW) Scientists and Engineers, and Hong Kong Croucher Senior Research Fellowship. She was an Editor of the IEEE Transactions on Electron Devices (1996-2002) and Electron Device Letters (2016-2019), an Associate Editor for the Journal of Crystal Growth and Applied Physics Letters. Lau’s research work is focused on the development of monolithic integration of semiconductor devices on industry-standard silicon substrates.
Matthias Wuttig
RWTH Aachen University
Novel Optical Materials by Design: The Role of Chemical Bonding
Optical Materials with tunable properties enable a plethora of advanced photonic applications. To fully exploit the potential of this material class, design rules for the corresponding optical properties are desirable. Here, we identify stoichiometry trends in a wide range of chalcogenides and related materials. A quantum-chemical map explains these trends and provides a blueprint to design novel optical materials.
About the Speaker
Developing novel materials is the goal of Matthias Wuttig's work. In doing so, he relies on an unconventional approach, the development of 'treasure maps' to identify promising materials. This has enabled the identification of fundamental relationships between relevant material properties and the underlying chemical bonding mechanism. He is particularly interested in the design of materials for photonic applications, data storage and energy conversion. After his PhD he spent time in Marseille, Tsukuba, Berkeley, Murray Hill (Bell Labs) and the Research center Jülich, before he moved to RWTH Aachen in 1997. There he was speaker of the Strategy Council, Dean of the Faculty of Mathematics, Informatics and Natural Sciences and has been the speaker of the Collaborative Research Center Nanoswitches since 2011. He has received various scientific awards and funding for his work, such as an ERC Advanced Grant.
Special Events, Symposia and Special Programs
Fiber Modeling and Fabrication Technical Group Rapid-Fire Presentations
Monday, 25 July 12:30 – 13:30
Join the Optica Fiber Modeling and Fabrication Technical Group on Monday for this special event highlighting research being done in this topic area by students and early career professionals. The event will be an opportunity to hear rapid-fire presentations of the work they will present during the congress and network with your colleagues.
Welcome Reception
Monday, 25 July 18:30 – 20:00
Enjoy food and drinks with your friends and colleagues during the congress welcome reception.
LGTBQ+ & Allies Meet & Greet
Tuesday, 26 July 07:00 – 08:00
Join us for some coffee and a snack before the day begins for an informal get together to discuss being LGTBQ+ in STEM and how we can work together to create a more inclusive community. Chair of the Optical Devices & Materials for Solar Energy & Solid-state Lighting topical Klaus Jäger, Helmholtz-Zentrum Berlin, will be on hand to share his thoughts and to hear from you. All are welcome, come meet others in the community and share your thoughts and ideas. For example:
- How can everyone be a good LGTBQ+ ally?
- How can Optica can do better to help build a more welcoming and inclusive optics and photonics community?
- What kinds of programs, trainings or information could Optica explore to help continue to build on existing diversity and inclusion efforts?
From Corporate to Startup: Careers Outside of Academia (CANCELLED)
Tuesday, 26 July 12:00 – 13:30
Curious about what you can do with a STEM degree outside of university? Unclear about the process and opportunities? Join us for the NOMA lunch hour where you will hear about three personal stories on career trajectories outside of academia.
The interactive panel will be split into two parts: first, the panelists will introduce themselves. Afterwards, there will be plenty of time for all your questions.
*This event has been cancelled*
BGPP Reception
Tuesday, 26 July 19:00 – 22:00
Join BGPP attendees and sponsors for a BGPP-only reception at John Mullins Pub in Maastricht. After a welcome beverage and brief welcome, network and enjoy drinks and hot & cold appetizers in this Irish Pub atmosphere.
BGPP-registered attendees only; RSVP required
Sponsored by: CEA, FiSens, TeraXion, Thorlabs, Photonova, FBGs and OFS Fitel
Early-Careers Networking Happy Hour With OPTICA Ambassadors
Tuesday, 26 July 19:00 – 20:00
Optica Ambassadors Tatev Chalyan and Aura Higuera Rodriguez invite Early Career Researchers (ECR), aka postdocs and PhD students, to network and talk about the opportunities and benefits OPTICA provides to ECRs, new programs for younger researchers and the path as Ambassadors in society. Light food and beverages will be served.
Congress Banquet
Wednesday, 27 July 19:00 – 21:00
Join your colleagues for a special evening at the only terraced castle in the Netherlands, Château Neercanne. The banquet requires a separate registraiton. Tickets are available for EUR 100.
International Year of Glass Special Session
In celebration of the 2022 International Year of Glass, please join BGPP, NOMA and NP in this special session dedicated to glass for photonics.
Speakers
- Rebecca Dylla-Spears, Lawrence Livermore National Labs, USA
Additive Manufacturing of Multi-Composition Glass Optics - Heike Heike Ebendorff-Heidepriem, University of Adelaide, Australia
Novel glass development for Speciality Optical Fibres - Bastian Rapp, Freiburg University, Germany
“Glassomer,” a Novel Glass Manufacturing Process of Silica with Polymers - Eric Van Stryland, CREOL, USA
Determination of Nuclear and Bound-Electronic Contributions to N-2: Historical Overview
Quantum Communications and Computing Systems
This Joint Symposium is the result of the cooperation between the Networks, SPPCom, and NP topical meetings.
Secure quantum networks and quantum computers are among the hottest R&D topics in the information processing and communications field. Emerging quantum technologies such as the advent of 127-qubit processors, progress in quantum cryptography and quantum key distribution, as well as network connectivity between quantum computers and sensors over quantum networks, have opened up novel application areas. Error correction and fault tolerance, however, still remain very challenging, and do not yet come close to the capabilities of classical systems.
While quantum technology will not eliminate the conventional way of computing and information processing/communication, some problems and applications ask for the specific advantages offered uniquely by quantum technology: The handling of problems beyond-classical computational complexity and speed, as well as quantum security. It is also in this context that optical technologies, and in particular integrated photonics, will play a significant role.
This symposium aims at reporting and discussing trends in practical applications of photonic quantum technologies and fosters the interaction of classical and quantum photonic researchers.
Speakers
- Angela Sara Cacciapuoti, University of Naples Federico II, Italy
The Quantum Internet: The Quest for a Network-Paradigm Shift - Marko Loncar, Harvard University, USA
Integrated Quantum Nano Photonics with Lithium Niobate - William Munro, NTT Basic Research Labs, Japan
Photonic Quantum Computing and Tomorrow's Quantum Internet - Prineha Narang, Harvard University, USA
- Stefano Pirandola, University of York, UnitedKingdom
Building Quantum-Safe Networks - Sergey Polyakov, NIST, USA
Quantum-Enhanced Data Links - Srinivasan Kartik, NIST, USA
Microresonator Optical parametric Oscillators as a Flexible On-Chip Coherent Light Source - Jelena Vučković, Stanford Univ., USA
Scalable Semiconductor Quantum Systems
Quantum Materials and Fabrication Technologies
This Joint Symposium is the result of the cooperation between the IPR and NOMA topical meetings.
Organizers
- Shamsul Arafin, ECE, Ohio State Univ., USA
- Matteo Clerici, University of Glasgow, UnitedKingdom
- Mikhail Kats, University of Wisconsin-Madison, USA
- Masahiro Nada, NTT Device Technology Labs, Japan
- Judith Su, Univ. of Arizona, USA
- Noelia Vico Trivino, IBM Research-Zurich, Switzerland
Speakers
- Igor Aharonich, University of Technology Sydney, Australia
Hexagonal Boron Nitride – Emerging Platform for Quantum Photonics - Andrew Forbes, University of Witwatersrand, SouthAfrica
High-Dimensional Quantum State Engineering with Structured Photons - Gregor Koblmüller, Technische Universität Munchen, Germany
Quantum Nanowire Integrated Photonic Circuits - Karan Mehta, Cornell University, USA
Integrated Photonic Control of Trapped-ion Quantum Systems
SDM Challenges and Perspectives
The sustained traffic growth in the different optical networks segments makes activating additional spatial dimensions essential. Space-division multiplexing (SDM) solutions include multicore fibers, multimode fibers, or cables with a high number of single-mode fibers. SDM transmission can be carried out without channel coupling (e.g., over single-mode fiber bundles or uncoupled multicore fibers) or with channel coupling (e.g., over few-mode fibers or coupled multicore fibers). While uncoupled SDM enables easier integration with the existing transmission, amplification, and detection technologies, coupled transmission can offer component integration gains and cost savings. Uncoupled transmission seems to gain momentum in specific network segments, such as submarine space. On the other hand, the transmission of coupled signals remains a research topic raising interest from new players. This special session will discuss the challenges and perspectives of introducing SDM in optical systems and networks, bringing together experts from industry and academia working in the field.
Organizers
- Darli A. A. Mello, Unicamp, Brazil
- Filipe M. Ferreira, University College London, UnitedKingdom
- Georg Rademacher, NICT, Japan
SDM and Multi-Band Networks: Competing or Complementary Approaches?
In recent years, both new optical fiber transmission windows (O/E/S-band) and new optical fibers carrying orthogonal data channels have been widely explored as technologies to meet the ever-increasing demand for new data services. Broadly termed as "multi-band" or "space-division multiplexing (SDM)" these approaches both cover a range of technologies targeted in a variety of network contexts. In some areas multi-band and SDM technologies may complement each other or exist as part of the same network evolution strategy, whereas in many areas operators may face a direct choice between competing technologies.
In this workshop, we explore the intersection between multi-band and SDM technologies. With a range of expert speakers from industry and academia we aim to identify in which network contexts these approaches lead to competing technologies, if either has clear advantages, and where synergies between them may lie. In addition to exploring the latest research results and trends of these technologies, the workshop also invites operators to give their view on their commercial potential.
Organizers
- Ben Puttnam, NICT, Japan
- Lidia Galdino, Univ. College of London, UnitedKingdom
- Antonio Napoli, Infinera, Germany
- Haoshuo Chen, Nokia Bell Labs, USA
Part 1: Components
- Jose Enrique Antonio-Lopez, University of Central Florida, USA
- Robert Emmerich, Fraunhofer Heinrich-Hertz Inst., Germany
- Takeshi Hoshida, Fujitsu Ltd., Japan
- Georg Rademacher, NICT, Japan
- Lutz Rapp, ADVA SE, Germany
- Eric Sillekens, University College London, UnitedKingdom
Part 2: Networks
- Lara Garret, TE SubCom, USA
- Julia Larikova, Infinera, USA
- Sergejs Makovejs, Corning, UnitedKingdom
- Yutaka Miyamoto, NTT Corporation, Japan
- Ioannis Tomkos, University of Patras, Greece
Symposium in Honor of Nicolaas Bloembergen
Nicolaas Bloembergen was a pioneer and founder of the field of Nonlinear Optics, for which he received the 1981 Nobel Prize in Physics. Among his other remarkable achievements are the proposing and demonstrating of a three-level pumping scheme to achieve population inversion in laser systems, and his research contributions on ultrafast laser interactions with matter. Nonlinear optics became a revolutionary field of optics that has applications in medicine, spectroscopy, information and communication systems, optical metrology, chemical, and biological sensing, and quantum photonics, to name a few. Please join us in celebrating the life and achievements of the Dutch-born physicist and Nobel Laureate, who received his Nobel Prize 40 years ago. We will hear from people who remember working with Nicolaas.
Organizers
- Ksenia Dolgaleva, Universtiy of Ottawa, Canada
- Sergey Polyakov, NIST, USA
Speakers
- Jia-Ming Liu, Univ. of California, Los Angeles, USA
- Eric Mazur, MIT, USA
- Lewis Rothberg, University of Rochester, USA
- Eric Van Stryland, CREOL, USA
- Eli Yablonovitch, Univ. of California, Berkeley, USA
Symposium on Machine Learning and Autonomous Design for Photonic Devices
Integrated photonic devices provide a versatile platform for different applications, such as telecommunications, quantum information processing, and biosensing. The design of photonic components promises to improve the efficiency of photonic devices. However, designing integrated photonic components and circuits remains a major challenge due to their complex structures with large combinations of features. Machine learning techniques are capable of modeling and optimizing the response of photonic components much faster than the traditional design methodologies. The novel machine learning design frameworks for photonic devices, such as, artificial neural networks, deep neural networks, and deep generative networks, have generated promising results in designing and modeling integrated photonic devices in recent years.
This symposium will introduce machine learning and autonomous design for photonic devices. It will provide a broad range of insights, including but not limited to artificial neural networks, deep neural networks, deep generative networks, and autonomous design.
Organizers
- Jonathan Fan, Stanford Univ., USA
- Jonathan Hu, Baylor University, USA
Speakers
- Wenshan Cai, Georgia Inst. of Technology, USA
Inversely Designed Meta-System: Beyond the Linear Optical Regime - Rasmus Christiansen, Technical University of Denmark, Denmark
Inverse Design of Photonic Devices Exploiting Extreme Dielectric Confinement of Light - Alexander Kildishev, Purdue University, USA
Inverse-Designed On-Chip Integration of Solid-State Quantum Emitters - Giulia Marcucci, Apoha Ltd, UnitedKingdom
Hydro-Photonic-Advantaged Computing Machine by Artificial Neural Networks - Owen Miller, Yale University, USA
Photonic Design Problems as QCQPs - Otto Muskens, University of Southampton, UnitedKingdom
Deep Learning Enabled Strategies for Modelling of Complex Nanostructures - Willie Padilla, Duke University, USA
Deep Inverse Learning for Photonic Metamaterials - Aaswath Raman, University of California, Los Angeles, USA
Integrating Adjoint Optimization with Deep Learning Approaches for Photonic Inverse Design and Physics Discovery - Ergun Simsek, University of Maryland-Baltimore County, USA
Designing Photodetectors with Machine Learning - Zongfu Yu, University of Wisconsin-Madison, USA
Design Large-area Photonic Devices with Machine Learning and Accelerated Computing - Darko Zibar, Danmarks Tekniske Universitet, Denmark
Machine Learning Techniques for Optical Frequency Comb Optimization
Symposium on Optical Fiber and Grating Based Biomedical Sensors
This Symposium will bring together photonic device designers, physicists and (bio)chemists to review the most advanced optical fiber devices (optical fibers, fiber gratings and other waveguide technologies) able to detect (bio)chemical analytes and/or perform biomedical applications with high sensitivity, selectivity, and robustness, while lowering the limit of detection to levels required in practical applications.
Invited and Contributed talks will focus on tailoring light coupling mechanisms between engineered optical waveguides and their functional surface (if any) in response to external perturbations or surrounding medium changes. Specifically, the aim will be to understand how to optimize the transducing mechanisms to (1) encode the presence of a given analyte in a measurable change in the optical device properties or (2) achieve a specific functionality including tweezing or micro-surgery among others, ensuring in all cases reliability, reproducibility and robustness for in vitro or even in situ applications.
Of particular importance are issues regarding the refractive index modulation, optical properties of the devices, scattering, porosity and thickness of the functional layers and how these parameters can be optimized to enhance the overall performances. Functionalization strategies for bare, metal-coated, oxide-coated or graphene-coated glass and polymer surfaces for Surface Plasmon Resonance (SPR) based sensors or nanoparticle-assisted devices will also be reviewed and discussed.
Organizers
- Christophe Caucheteur, Mons University, Belgium
- Matthieu Lancry, ICMMO, University Paris Saclay, France
Speakers
- Francesco Chiavaioli, National Research Council / IFAC, Italy
Biosensing Using Optical Fibers: Perspectives and Challenges - Andrea Cusano, CeRICT s.c.r.l., Italy
Lab on Fiber Technology: Current Roadmap and Future Trends - Tianliang Li, National University of Singapore, Singapore
Fiber Bragg Grating-Based Surgical Device
Symposium on Recent Advances in Ultrafast Laser Waveguide Writing in Transparent Materials
Organized by BGPP: Roberto Osellame, CNR - Institute for Photonics and Nanotechnologies, Italy; Réal Vallée, COPL, Laval University, Canada
Since the 1996 seminal paper [1], the field of ultrafast laser waveguide writing in transparent materials has grown significantly. Once a lab peculiarity, the method is now used by many start-up companies for real-world applications and has, in many cases, proven competitive to existing and well-entrenched photolithographic approaches. Nevertheless, ultrafast laser waveguide writing remains an intriguing topic for research. On the one hand, it is often the only technique that can produce optical waveguides in many important materials opening up device miniaturisation across different fields. On the other hand, improving our fundamental understanding of the modification mechanism involved with irradiating materials can still provide new and significant improvements to waveguide properties.
This special symposium forms part of the 2022 BGPP Topical Meeting. Submissions reporting on novel results across applications utilizing waveguide writing, from optical communications to quantum optics and astrophotonics, are welcomed. In addition, papers are being solicited to present new insights on the refractive index modification mechanisms and in the demonstration of laser waveguide writing within new materials that have the potential to open additional new applications.
The topics of solicited submissions include but are not limited to waveguide writing for:
- Optical communication devices
- Quantum photonic applications
- Astrophotonic devices
- Integrated sensing applications
- Fundamental understanding of the refractive index modification
- Novel 3D integrated photonic devices
- Lab-on-a-chip/Lab-in-a-fiber devices
- Fabrication of waveguidesand components in new materials
Organizers
- Roberto Osellame, CNR - Institute for Photonics and Nanotechnologies, Italy
- Réal Vallée, COPL, Laval University, Canada
Speakers
- Xianmin Jin, Shanghai Jiao Tong University, China
3D Photonic Quantum Chip and Large-scale Quantum Information Processing - Stefan Nolte, Friedrich-Schiller-Universität Jena, Germany
Inscription of Silicon Waveguides Using Ultrashort Laser Pulses - Nicholas Psaila, Optoscribe, UnitedKingdom
From Optoscribe Technology to Industrial Perspectives on Femtosecond Laser Direct Writing
Panel Discussion: Energy Crisis and Climate Catastrophe – The Role of Solar Energy
Tuesday, 26 July 18:45 – 19:30
In addition to the growing climate crisis, the past few months have made it painfully clear that European energy independence also has important strategic implications for the future. Numerous studies have shown that photovoltaic technology can supply a significant fraction of the carbon-free electricity that will be needed in the future based on a solar resource that is freely available to most of the Continent. In this panel discussion, we bring together representatives from politics, academia, and industry to discuss the potential of PV to help decarbonize Europe’s energy system and what near-term actions must be taken to realize this goal.
Organizer
- Klaus Jaeger, Helmholtz-Zentrum Berlin, Germany
Speakers
- Arthur Daemers, Solar Power Europe, Belgium
- Ivan Gordon, IMEC, Belgium
- Jimmy Melskens, HyET Solar BV, Netherlands
BGPP Industry Session
Wednesday, 27 July 14:30 – 16:00
BGPP 2022 continues the long-standing tradition of addressing fundamental and technical issues of immediate and long-term application of fiber Bragg gratings and other devices fabricated by laser-matter-interaction. While fundamental aspects are covered by invited and contributed proceeding papers, the technical aspect is addressed in the Industry Session.
Speakers from FiSens, Photonova, Inc. and FBGS have been invited to make a 10 min presentation to showcase their advanced products, to explain the underlying technology and working principle. Company professionals that are also presenting scientific work during the conference have been favored. Therefore, the scientists in the auditorium working in closely related areas may get easily into contact with the company professionals for various reasons. Scientist may see how applied research translates into new products and applications. Junior scientists may be stimulated to create tomorrow a start-up in the field or join a company. In this way BGPP encourages greater interaction between the industry professionals and scientist.
Speakers include:
Tristan Kremp, OFS Fitel LLC, USA
Guillaume Laffont, CEA Saclay, France
Sébastien Loranger, PhotoNova, Inc., Canada
Bram Van Hoe, FBGS, Belgium
Christian Waltermann, FiSens GmbH, Germany